Attacks in the multi-user setting: Discrete logarithm, Even-Mansour and PRINCE

Pierre-Alain Fouque¹, Antoine Joux², Chrysanthi Mavromati³

¹ Université Rennes 1 and Institut Universitaire de France
 ² CryptoExperts and Chaire de Cryptologie de la Fondation de l'UPMC
 ³Sogeti/ESEC R&D Lab and UVSQ Laboratoire PRiSM

ASIACRYPT 2014

Cryptographers prove the security of their schemes in a single-user model.

In real world: There are many users, each with a different key, sending each other encrypted data.

Multi-user setting

Main ideas

- Graph of key relations
- New variant of memory-less collision attacks

Generic discrete logarithm

- Single-user discrete log: time \sqrt{N} (generic group)
- Multi-user discrete log (*L* logs):
 - studied by Kuhn and Struik
 - use of the parallel version of the Pollard rho technique with distinguished points
 - time \sqrt{NL} , $L \leq N^{1/4}$

Distinguished points for discrete logarithms

• Define a random function $f:\mathcal{G}\to\mathcal{G}$

$$f(z) = \left\{ egin{array}{cc} z^2 & ext{if } z \in \mathcal{G}_1, \ gz & ext{if } z \in \mathcal{G}_2, \end{array}
ight.$$

where $\mathcal{G}_1 \cup \mathcal{G}_2 = \mathcal{G}$.

- Define a distinguished subset S_0
- Build chains from random startpoints: $y_{i+1} = f(y_i)$
- Stop chain when $y_\ell = d \in S_0$

$$g^{x_{1}} = y_{1} \xrightarrow{f} y_{2} \xrightarrow{f} y_{3} \xrightarrow{f} y_{4} \xrightarrow{f} \log_{g} d = Ax_{1} + B$$

$$g^{x_{1}'} = y_{1}' \xrightarrow{f} y_{2}' \xrightarrow{f} y_{3}' \xrightarrow{f} y_{4}' \xrightarrow{f} \log_{g} d' = A'x_{1}' + B'$$

$$\log_{g} d' = A'x_{1}' + B'$$

New method

Average length of chains: $\sqrt{N/L}$ Expected number of collisions: $\mathbb{E}[\text{Coll}] = \frac{(L\sqrt{N/|S_0|})^2}{N} = L$

New method - Construct the graph

New method - Construct the graph

 \rightarrow learn all keys in connected component

New method - Construct the graph

\rightarrow learn all keys in connected component

Overall complexity of the attack: \sqrt{NL}

P.-A. Fouque, A. Joux and Ch. Mavromati

Discrete Logarithm

Description of Even-Mansour

Introduced by Even and Mansour at [Asiacrypt '91].

• Motivated by the DESX construction [Rivest, 1984]

DES key k, whitening keys k_1, k_2

Description of Even-Mansour

Introduced by Even and Mansour at [Asiacrypt '91].

• Motivated by the DESX construction [Rivest, 1984]

DES key k, whitening keys k_1, k_2

• Minimal construction of a blockcipher

$$\Pi_{K_1,K_2}(m) = \pi(m \oplus K_1) \oplus K_2$$

- Keyed permutation family Π_{K_1,K_2}
- π is a public permutation on *n*-bit values ($N = 2^n$)
- Two whitening keys K_1, K_2 of *n*-bits

P.-A. Fouque, A. Joux and Ch. Mavromati

Known results in the single-user model

Main result: Any attack with D queries to Π and T off-line computation (queries to the public permutation π) has an upper bound of $O(DT/2^n)$ on probability of success.

Single-Key EM: Proved secure with the same bound [Dunkelman et al.]

Slide attacks and variants - Two key case

[Dunkelman et al., 2012]

Define $F(P) = \Pi(P) \oplus \Pi(P \oplus \delta)$ $f(P) = \pi(P) \oplus \pi(P \oplus \delta)$

Fix $\delta \in \{0,1\}^n$: Assume (P, P') satisfy $P \oplus P' = K_1$ (slid pair)

Slide attacks and variants - Two key case

[Dunkelman et al., 2012]

Define $F(P) = \Pi(P) \oplus \Pi(P \oplus \delta)$ $f(P) = \pi(P) \oplus \pi(P \oplus \delta)$

Fix $\delta \in \{0,1\}^n$: Assume $(P,P^{'})$ satisfy $P \oplus P^{'} = K_1$ (slid pair)

Then,

$$F(P') = \Pi(P') \oplus \Pi(P' \oplus \delta)$$

= $\pi(P' \oplus K_1) \oplus \not K_2 \oplus \pi(P' \oplus \delta \oplus K_1) \oplus \not K_2$
= $\pi(P) \oplus \pi(P \oplus \delta) = f(P)$

So, if F(P') and f(P) collide then:

 $P \oplus P'$ is a good key candidate.

Slide attacks and variants - Two key case

[Dunkelman et al., 2012]

Define $F(P) = \Pi(P) \oplus \Pi(P \oplus \delta)$ $f(P) = \pi(P) \oplus \pi(P \oplus \delta)$

Fix $\delta \in \{0,1\}^n$: Assume $(P,P^{'})$ satisfy $P \oplus P^{'} = K_1$ (slid pair)

Then,

$$F(P') = \Pi(P') \oplus \Pi(P' \oplus \delta)$$

= $\pi(P' \oplus K_1) \oplus \not K_2 \oplus \pi(P' \oplus \delta \oplus K_1) \oplus \not K_2$
= $\pi(P) \oplus \pi(P \oplus \delta) = f(P)$

So, if F(P') and f(P) collide then:

 $P \oplus P'$ is a good key candidate.

Note that if $P \oplus P' = K_1 \oplus \delta$ yields the same property then $P \oplus P' \oplus \delta$ is also a key candidate.

P.-A. Fouque, A. Joux and Ch. Mavromati

Finding collisions: the distinguished points technique

- Define a function f on a set S of size N.
- Define a distinguished subset S_0 of S
- Build chains from random startpoints: $x_{i+1} = f(x_i)$
- Stop chain when $x_\ell = d \in S_0$
- Store (*x*₀, *d*, *ℓ*)

P.-A. Fouque, A. Joux and Ch. Mavromati

Attacks on the Even-Mansour scheme

Finding collisions: the distinguished points technique

- Define a function f on a set S of size N.
- Define a distinguished subset S_0 of S
- Build chains from random startpoints: $x_{i+1} = f(x_i)$
- Stop chain when $x_\ell = d \in S_0$
- Store (*x*₀, *d*, *ℓ*)

P.-A. Fouque, A. Joux and Ch. Mavromati

Attacks on the Even-Mansour scheme

Application on Even-Mansour - First trial

Goal: Find a collision between a set of chains using the public permutation π and a chain obtained from the keyed permutation Π

Define $F(P) = \Pi(P) \oplus \Pi(P \oplus \delta)$ and $f(P) = \pi(P) \oplus \pi(P \oplus \delta)$

 \rightarrow These chains can cross but not merge

Application on Even-Mansour - First trial

Goal: Find a collision between a set of chains using the public permutation π and a chain obtained from the keyed permutation Π

Define
$$F(P) = \Pi(P) \oplus \Pi(P \oplus \delta)$$
 and $f(P) = \pi(P) \oplus \pi(P \oplus \delta)$

 \rightarrow These chains can cross but not merge

Another option: use a function that mixes calls to Π and $\pi \Rightarrow {\rm adaptive \ attack}$

Application on Even-Mansour - New idea

Define new functions:

- Assume that two plaintexts (P, P') satisfy: $P' = P \oplus K_1$ or $P' = P \oplus K_1 \oplus \delta$
- Then $G(P') = g(P) \oplus K_1(\text{resp.} \oplus \delta)$

 \rightarrow These chains can become parallel

P.-A. Fouque, A. Joux and Ch. Mavromati

Application on Even-Mansour - New idea

Define new functions:

- Assume that two plaintexts (P, P') satisfy: $P' = P \oplus K_1$ or $P' = P \oplus K_1 \oplus \delta$
- Then $G(P^{'}) = g(P) \oplus K_1(\text{resp.} \oplus \delta)$

\rightarrow These chains can become parallel

P.-A. Fouque, A. Joux and Ch. Mavromati

Attacks on the Even-Mansour scheme

Detection of parallel chains with distinguished points

- For g chains: P is a distinguished point if $f(P) \in S_0$
- For G chains: P' is a distinguished point if $F(P') \in S_0$

Detection of parallel chains with distinguished points

- For g chains: P is a distinguished point if $f(P) \in S_0$
- For G chains: P' is a distinguished point if $F(P') \in S_0$

• If $P^{'} = P \oplus K_1$ and P is a distinguished point in the g chain, then:

$$\begin{array}{lll} F(P^{'}) = \Pi(P^{'}) \oplus \Pi(P^{'} \oplus \delta) & = & \pi(P^{'} \oplus \mathcal{K}_{1}) \oplus \not \mathcal{K}_{2} \oplus \pi(P^{'} \oplus \mathcal{K}_{1} \oplus \delta) \oplus \not \mathcal{K}_{2} \\ & = & \pi(P) \oplus \pi(P \oplus \delta) = f(P) \end{array}$$

(then P' is a distinguished point in the G chain)

Detection of parallel chains with distinguished points

- For g chains: P is a distinguished point if $f(P) \in S_0$
- For G chains: P' is a distinguished point if $F(P') \in S_0$

• If $P' = P \oplus K_1$ and P is a distinguished point in the g chain, then:

(then P' is a distinguished point in the G chain)

Detection of parallel chains: for (P, P') distinguished points, test if F(P') = f(P)

New attack on Even-Mansour

- Build chains from $g(P) = P \oplus \pi(P) \oplus \pi(P \oplus \delta) = P \oplus f(P)$
 - Stop if f(P) arrives at a distinguished point
- Build chains from $G(P') = P' \oplus \Pi(P') \oplus \Pi(P' \oplus \delta) = P' \oplus F(P')$
 - Stop if F(P') arrives at a distinguished point
- If F(P') = f(P)
 - Then $G(P^{'}) = g(P) \oplus K_1$ (parallel chains)
 - We have a good candidate for K₁

We only need to store endpoints (don't have to recompute chains)

Attack Even-Mansour in the multi-user setting

1 Use of second idea

- Build chains from g of length ℓ
- Build chains from G of length ℓ for each user
- · Find parallel chains

2 Use of first idea

- Construct a graph:
 - Nodes are labelled by the users and the unkeyed user
 - If $G^{(i)} = G^{(j)}$ (for users (i), (j)), then add a vertex between the two nodes
 - $K_1^{(i)} \oplus K_1^{(j)} (\oplus \delta)$
 - If we find a single collision between a user and the unkeyed user, then we learn all keys (in the connected component)

Analysis of the attack:

For
$$2^{n/3}$$
 users, $2^{n/3}$ queries/user, $2^{n/3}$ unkeyed queries \rightarrow recover a constant fraction of $2^{n/3}$ keys

Description of PRINCE

PRINCE [Borghoff et al., Asiacrypt 2012]

- 64-bit lightweight block cipher
- 128-bit key k split into equal parts: $k = k_0 || k_1$
- extension to 192 bit: $k = (k_0 \| k_1)
 ightarrow (k_0 \| k_0^{'} \| k_1)$
- k_0' derived from k_0 by using the linear function L': $L'(k_0) = (k_0 \gg 1) \oplus (k_0 \gg 63)$
- α -reflection property

$$\forall (k_0 \| k_0' \| k_1), \ D_{(k_0 \| k_0' \| k_1)}(\cdot) = E_{(k_0' \| k_0 \| k_1 \oplus \alpha)}(\cdot)$$

$$E_k(m) = k_0^{'} \oplus Pcore_{k_1}(m \oplus k_0)$$

Attacks on PRINCE in the single and multi-user setting

Attack in the multi-user setting

Total cost 2^{65} operations for deducing k_0 and k_1 of 2 users in a set of 2^{32} .

Attack in the single-user setting

$$T_{off} = 2^{96}, T_{on} = 2^{32}, D = 2^{32}$$

 $DT_{off} = 2^{128}$
 $DT_{on} = 2^{64}$

Conclusion

- Propose two new algorithmic ideas to improve collision based attacks
- Application of the first idea to solve the discrete logarithm problem in the multi-user setting
- Application of both ideas to the Even-Mansour scheme
- Propose two new attacks for PRINCE
 - The attacks were applied to DESX with some differences

Conclusion

- Propose two new algorithmic ideas to improve collision based attacks
- Application of the first idea to solve the discrete logarithm problem in the multi-user setting
- Application of both ideas to the Even-Mansour scheme
- Propose two new attacks for PRINCE
 - The attacks were applied to DESX with some differences

Thank you for your attention!