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The multi-user setting

Cryptographers prove the security of their schemes in a single-user model.

In real world: There are many users, each with a different key, sending
each other encrypted data.

Multi-user setting
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Main ideas

• Graph of key relations

• New variant of memory-less collision attacks
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Generic discrete logarithm

• Single-user discrete log: time
√
N (generic group)

• Multi-user discrete log (L logs):
• studied by Kuhn and Struik
• use of the parallel version of the Pollard rho technique with

distinguished points
• time

√
NL, L ≤ N1/4
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Distinguished points for discrete logarithms

• Define a random function f : G → G

f (z) =

{
z2 if z ∈ G1,
gz if z ∈ G2,

where G1 ∪ G2 = G.

• Define a distinguished subset S0

• Build chains from random startpoints: yi+1 = f (yi )

• Stop chain when y` = d ∈ S0

g x1 = y1 y2 y3 y4
f f f f

d

loggd = Ax1 + B

=

d
′

loggd
′

= A
′
x
′

1 + B
′

g x
′
1 = y

′

1
y
′

2 y
′

3 y
′

4
f f f f
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New method

g x (0)

= Y0
f . . . f . . .

g x (1)

= Y1
f . . . f . . .

f . . . f

f . . . f

g x (L−1)

= YL−1
f . . . f . . .

linear relation between
x (i) and x (j)

Average length of chains:
√
N/L

Expected number of collisions: E[Coll] =
(L
√

N/|S0|)2

N = L
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New method - Construct the graph

YiYj Lx (i),x (j)

YiYj

Y

→ learn all keys in

connected component

Overall complexity of the attack:
√
NL
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Description of Even-Mansour

Introduced by Even and Mansour at [Asiacrypt ’91].

• Motivated by the DESX construction [Rivest, 1984]

m

k1

DES c

k2

k

DES key k ,whitening keys k1, k2

• Minimal construction of a blockcipher

ΠK1,K2 (m) = π(m ⊕ K1)⊕ K2

m

K1

π Π(m)

K2

• Keyed permutation family ΠK1,K2

• π is a public permutation on n-bit values (N = 2n)
• Two whitening keys K1,K2 of n-bits

P.-A. Fouque, A. Joux and Ch. Mavromati Attacks on the Even-Mansour scheme 8 / 19



Description of Even-Mansour

Introduced by Even and Mansour at [Asiacrypt ’91].

• Motivated by the DESX construction [Rivest, 1984]

m

k1

DES c

k2

k

DES key k ,whitening keys k1, k2

• Minimal construction of a blockcipher

ΠK1,K2 (m) = π(m ⊕ K1)⊕ K2

m

K1

π Π(m)

K2

• Keyed permutation family ΠK1,K2

• π is a public permutation on n-bit values (N = 2n)
• Two whitening keys K1,K2 of n-bits

P.-A. Fouque, A. Joux and Ch. Mavromati Attacks on the Even-Mansour scheme 8 / 19



Known results in the single-user model

Main result: Any attack with D queries to Π and T off-line computation
(queries to the public permutation π) has an upper bound of O(DT/2n) on
probability of success.

Single-Key EM: Proved secure with the same bound [Dunkelman et al.]
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Slide attacks and variants - Two key case

[Dunkelman et al., 2012]

Fix δ ∈ {0, 1}n : Assume (P,P
′
) satisfy P ⊕ P

′
= K1 (slid pair)

Then,

F (P
′
) = Π(P

′
)⊕ Π(P

′
⊕ δ)

= π(P
′
⊕ K1)⊕��K2 ⊕ π(P

′
⊕ δ ⊕ K1)⊕��K2

= π(P)⊕ π(P ⊕ δ) = f (P)

So, if F (P
′
) and f (P) collide then:

P ⊕ P
′

is a good key candidate.

Note that if P ⊕ P
′

= K1 ⊕ δ yields the same property

then P ⊕ P
′ ⊕ δ is also a key candidate.
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Finding collisions: the distinguished points technique

• Define a function f on a set S of size N.

• Define a distinguished subset S0 of S

• Build chains from random startpoints: xi+1 = f (xi )

• Stop chain when x` = d ∈ S0

• Store (x0, d , `)

x0

x1

x2 x` = d

Two paired chains

x0

y0

d

How do we recover a collision?

x0

x`−`′

y0

d

`

`
′
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Application on Even-Mansour - First trial

Goal: Find a collision between a set of chains using the public permutation
π and a chain obtained from the keyed permutation Π

Define F (P) = Π(P)⊕ Π(P ⊕ δ) and f (P) = π(P)⊕ π(P ⊕ δ)

→ These chains can cross but not merge

Another option: use a function that mixes calls to Π and π ⇒ adaptive attack
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Application on Even-Mansour - New idea

Define new functions:

G (P) = P ⊕ Π(P)⊕ Π(P ⊕ δ) = P ⊕ F (P) and

g(P) = P ⊕ π(P)⊕ π(P ⊕ δ) = P ⊕ f (P)

• Assume that two plaintexts (P,P
′
) satisfy:

P
′

= P ⊕ K1 or P
′

= P ⊕ K1 ⊕ δ
• Then G (P

′
) = g(P)⊕ K1(resp. ⊕ δ)

→ These chains can become parallel

G
x0

x1
x2 x3 x4

g
y0

y1
y2 y3 y4

⊕K1

GΠ

x0

x1
x2 x3 x4

GΠ′ y0

y1
y2 y3 y4

K1 ⊕ K
′

1
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Detection of parallel chains with distinguished points

• For g chains: P is a distinguished point if f (P) ∈ S0

• For G chains: P
′

is a distinguished point if F (P
′
) ∈ S0

• If P
′

= P ⊕ K1 and P is a distinguished point in the g chain, then:

F (P
′
) = Π(P

′
)⊕ Π(P

′
⊕ δ) = π(P

′
⊕ K1)⊕��K2 ⊕ π(P

′
⊕ K1 ⊕ δ)⊕��K2

= π(P)⊕ π(P ⊕ δ) = f (P)

(then P
′

is a distinguished point in the G chain)

Detection of parallel chains: for (P,P
′
) distinguished points,

test if F (P
′
) = f (P)
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New attack on Even-Mansour

• Build chains from g(P) = P ⊕ π(P)⊕ π(P ⊕ δ) = P ⊕ f (P)

• Stop if f (P) arrives at a distinguished point

• Build chains from G (P
′
) = P

′ ⊕ Π(P
′
)⊕ Π(P

′ ⊕ δ) = P
′ ⊕ F (P

′
)

• Stop if F (P
′
) arrives at a distinguished point

• If F (P
′
) = f (P)

• Then G(P
′
) = g(P)⊕ K1 (parallel chains)

• We have a good candidate for K1

We only need to store endpoints (don’t have to recompute chains)
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Attack Even-Mansour in the multi-user setting

1 Use of second idea
• Build chains from g of length `
• Build chains from G of length ` for each user
• Find parallel chains

2 Use of first idea
• Construct a graph:

• Nodes are labelled by the users and the unkeyed user
• If G (i) = G (j) (for users (i), (j)), then add a vertex between the two

nodes
• K

(i)
1 ⊕ K

(j)
1 (⊕δ)

• If we find a single collision between a user and the unkeyed user, then
we learn all keys (in the connected component)

Analysis of the attack:

For 2n/3 users, 2n/3 queries/user, 2n/3 unkeyed queries
→ recover a constant fraction of 2n/3 keys
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Description of PRINCE

PRINCE [Borghoff et al., Asiacrypt 2012]

• 64-bit lightweight block cipher

• 128-bit key k split into equal parts: k = k0‖k1

• extension to 192 bit: k = (k0‖k1)→ (k0‖k
′

0‖k1)

• k
′

0 derived from k0 by using the linear function L′:
L′(k0) = (k0 ≫ 1)⊕ (k0 � 63)

• α-reflection property

∀(k0‖k
′

0‖k1), D(k0‖k
′
0‖k1)(·) = E(k

′
0‖k0‖k1⊕α)(·)

m

K0

PRINCEcore

K1

c

K
′
0

Ek (m) = k
′

0 ⊕ Pcorek1 (m ⊕ k0)
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Attacks on PRINCE in the single and multi-user setting

Attack in the multi-user setting

Total cost 265 operations for deducing k0 and k1

of 2 users in a set of 232.

Attack in the single-user setting

Toff = 296,Ton = 232,D = 232

DToff = 2128

DTon = 264
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Conclusion

• Propose two new algorithmic ideas to improve collision based attacks

• Application of the first idea to solve the discrete logarithm problem in
the multi-user setting

• Application of both ideas to the Even-Mansour scheme

• Propose two new attacks for PRINCE
• The attacks were applied to DESX with some differences

Thank you for your attention!
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